Provably Authenticated Group Diffie-Hellman Key Exchange

Emmanuel Bresson (ENS)

O. Chevassut (UCL - LBNL)

D. Pointcheval (ENS)

J.-J. Quisquater (UCL)

Outline

- Introduction
- Related work
- Model
- Security definitions
- A secure group Diffie-Hellman scheme
- Mutual authentication
- Conclusion

Introduction

- Distributed applications need to communicate within groups
 - Collaboration and videoconferencing tools
 - Stock market, air traffic control
 - Distributed computations, GRIDS
- Increasing security requirements
 - Privacy of data
 - Protection from hackers (public network)
 - Protection against trojan horses and viruses
- Group communication must address security needs

Related Work

- Two formal models
 - Bellare-Rogaway [BR93]
 - Shoup's simulatability [Sho99]
- Group Diffie-Hellman Characteristics
 - All the members join the group at once
 - Membership is know in advance
 - Group relatively small (up to 100 members)
 - Memnbers have similar computing power
 - No hierarchy and many-to-many communication
 - No centralized server

Model of Communication

- A set of n players which have many instances
- Each player holds a long-lived key

<u>Passer à la</u> <u>première page</u>

Adversarial Model

Adversary capabilities modelled via queries

send: send messages to instances

reveal: obtain an instance's session key

corrupt: obtain a player's long-lived key

Partnering / Freshness

Passer à la première page

Security Definitions

- Authenticated Key Exchange (AKE)
 - Implicit Authentication:
 Only the intended partners can compute sk
 - Semantic security:
 - A fresh session key is undistinguishable from a random string
- Mutual Authentication (MA)
 - Each player is convinced of the identity of his partners

Security Definitions (AKE)

Security Definitions (MA)

A Secure Group DH Scheme

• The common session key is:

-
$$sk=H(g^{x_1x_2...x_n})$$

- An algorithm (ring-based with signed flows)
 - Up-flow: U_i raises received values to the power of its x_i and forwards the result
 - Down-flow: U_n processes the last up-flow and broadcasts the result
 - Players computes the session key from values in the broadcast

A Secure Group DH Scheme

Security results (AKE)

- Proof in the Random-oracle model
 - An adversary can break AKE in two ways:
 - 1. Forge flows without corrupt=> forgery
 - 2. Guess the bit b involved in the Test-query=> Group Diffie-Hellman problem
- Authenticated Key Exchange
 - Advake (t,q_s,q_h) ? $n \cdot \text{Succ}^{\text{cma}}(t')$ + $2 \cdot q_s^n \cdot q_h \cdot \text{Succ}^{\text{gcdh}}(t'')$
 - t',t''? $t+q_s\cdot n\cdot T_{\exp}(k)$

Mutual Authentication (MA)

- Insurance that other members actually computed sk
 - Receipt is needed => « key confirmation »
 - Receipt computed from a common secret

```
=> « authenticator »
```

- Avoid impersonate attacks
 - Only the intended partners are able to authenticate
 - Session key is computed after authentication

Mutual Authentication

A generic transformation

8h ACM-CCS --- November 5-8, 2001 --- Philadelphia, USA

Passer à la première page

Security Results (MA)

- Proof in the Random-Oracle model
 - Adversary can break MA by guessing authenticator
 - Probability at most $q_h/2^l$ per player
- Mutual authentication:
 - Advake' (t',q_s,q_h) ? Advake $(t,q_s,q_h)+q_h\cdot/2^l$
 - Succ^{ma} (t',q_s,q_h) ? Adv^{ake} (t,q_s,q_h)

$$+ n \cdot q_h \cdot /2^l$$

-
$$t',t''$$
? $t + (q_s + q_s) \cdot O(1)$

Conclusion

- Limitations : static case
 - Random oracle model
 - Efficiency: does not handle incremental membership changes
- More general scenario
 - Members join and leave at any time
 - E. Bresson, O. Chevassut and D. Pointcheval, <u>Provably Authenticated Group Diffie-Hellman</u> <u>Key Exchange – The Dynamic Case</u>, to appear at Asiacrypt '01, Dec 9—13, 2001

